miércoles, 25 de enero de 2012

PROCESADORES



En realidad "procesador" es un término relativamente moderno. Se refiere a lo que en los grandes ordenadores de antaño se conocía como Unidad Central de Proceso UCP (CPU "Central Processin Unit" en la literatura inglesa).  Comenzó siendo del tamaño de un armario, posteriormente se redujo al de una gran caja, después se construyó en una placa de unas 15 x 15 pulgadas.  Finalmente se construyó en un solo circuito integrado encapsulado en un "chip" que se inserta en un zócalo de la placa-base.
En los primeros tiempos de la informática personal, que podemos suponer se inicia con la introducción del PC ("Personal Computer") por IBM a mediados de 1981,  el mercado de microprocesadores para el PC estaba copado por Intel, que arrancando con el 8088, un modesto procesador de 16 bits a 4.77 MHz de velocidad de reloj ( H2), fue sufriendo sucesivas mejoras;  principalmente en lo que respecta a la velocidad (que en el 2001 ha alcanzado más de 1 GHz. para equipos comerciales); capacidad de procesamiento en paralelo; capacidad de los registros; cache interna y facilidades hardware para multiprogramación.
En la imágen adjunta sendas vistas, superior e inferior, de un procesador Intel 80386 de 16 MHz junto con el primitivo 8088.
Nota:  En la actualidad existen procesadores fabricados por otras compañías (IBM, AMD, Cyrix, Etc.) que son compatibles a nivel ensamblador con el juego de instrucciones Intel, lo que permite que no todos los PCs sean necesariamente "Intel inside".
§2  Galería de procesadores "Ilustres"
El cuadro adjunto (referido exclusivamente a los productos Intel), comprende un resumen de urgencia de la historia de los procesadores utilizados en la informática personal.
Modelo
año
Registros internos (bits)
bus de datos (bits) (1)
Bus de direcc. (bits)
Memoria (4)
Frecuencia externa (2)
Frecuencia interna máxima (3)
Modo
8088
1979
16
8
20
1 MB.
4.77 MHz
14 MHz.
Real
80286
1982
16
16
24
16 MB.

12.5 MHz.
Real/Prot
80386
1985
32
32
32
4 GB.

20 MHz.
Protegido
80486
1989
32
32
32
4 GB.

25 MHz.
Protegido
Pentium
1993
32
64

4 GB.

60 MHz.
Protegido
Pentium-pro
1995
32
64

64 GB.
66 MHz
200 MHz
Protegido
Pentium II
1997
32
64

64 GB.
66/100 MHz
266 MHz
Protegido
Pentium III
1999
32/128
64

64 GB.

550 MHz
Protegido
Pentium 4
2001
32/128
64

64 GB.
400 MHz.
2 GHz
Protegido
Pentium M
2003







?






?

Nota:  Por razones eminentemente comerciales, casi todos los modelos aparecieron en diversas versiones, que se diferenciaban en la frecuencia interna, tamaño de la caché, etc.
(1) Se refiere al bus "externo", que utiliza el procesador para comunicar con el exterior.  Internamente el procesador dispone de buses que son de 2 a 4 veces esta anchura.
(2)  Los valores indicados para las frecuencias externas son típicos de los modelos de la época (por tanto aproximados)
(3)  Los valores de frecuencia interna máxima son los correspondientes al momento de la aparición del modelo.
(4)  Se refiere a la máxima memoria accesible directamente.
  Es significativo señalar que todos son compatibles hacia atrás con sus predecesores, de forma que pueden ejecutar el código objeto escrito para el 8086, el primer ejemplar de esta prolífica saga aparecido en 1978 (no incluido en el cuadro).
En la tabla adjunta se muestran las características principales de los procesadores más utilizados en el 2004.
 
Modelo 
Transistores
Velocidad del núcleo
Caché L2
Velocidad bus frontal
Celeron
7,500,000
1.06 GHz - 2 GHz
256 KB
133 MHz y 400 MHz
Pentium II
7,500,000
233 MHz - 450 MHz
512 KB
100 MHz
Pentium III
9,500,000
450 MHz - 1 GHz
256 KB
133 MHz
Pentium III Xeon
28,100,000
500 MHz - 1 GHz
256 KB - 2 MB
100 MHz
Pentium 4
55,000,000
1.4 GHz - 3.4 GHz
256 KB
800 MHz
K6-II
9,300,000
500 MHz - 550 MHz
N/A
100 MHz
K6-III
21,300,000
400 MHz - 450 MHz
256 KB
100 MHz
Athlon (K7)
22,000,000
850 MHz - 1.2 GHz
256 KB
200 MHz y 266 MHz
Athlon XP
37,500,000
1.67 GHz
384 KB
266 MHz
Duron
N/A
700-800 MHz
64 KB
200 MHz
PowerPC G3
6,500,000
233 MHz - 333 MHz
512 KB, 1 MB
100 MHz
PowerPC G4
10,500,000
400 MHz - 800 MHz
1 MB
100 MHz
Athlon 64
105,900,000
800 MHz
1 MB
1.6 GHz
§3 Evolución
En esta mini-historia, podemos destacar varios hitos importantes:
§3.1  Soporte para memoria virtual
La introducción en 1982 del procesador Intel 80286 marcó un hito importante por varios motivos:  Por primera vez el procesador podía acceder más rápidamente a sus propios registros que a la RAM más rápida existente; desde entonces esta ventaja no ha hecho sino aumentar en favor del procesador.
Desde el punto de vista del software, el verdadero avance fue la implementación en el micro de un dispositivo que permitía el manejo de memoria virtual ( H5a).  Hasta entonces, el manejo de este tipo de memoria había que realizarlo a nivel del Sistema Operativo, pero el 286 permitía ya manejarlo de forma nativa mediante el procesador, con las consiguientes mejoras del rendimiento y la seguridad.
§3.2  Introducción del coprocesador matemático integrado
Los procesadores del tipo 8086 solo podían realizar operaciones aritméticas con números enteros.  Para los fraccionarios debían utilizar complicados artificios, por lo que desde el principio se crearon procesadores específicos para operaciones aritméticas con números fraccionarios.
Conocidos como coprocesadores de punto flotante o coprocesadores matemáticos, eran una opción instalable en un zócalo vacío preparado al efecto en la placa-base, enlazado mediante líneas especiales con el procesador principal.  Estos procesadores aligeraban grandemente los cálculos en las aplicaciones que eran capaces de sacar partido de su existencia, y no solo realizaban operaciones de números fraccionarios (de coma flotante 2.2.4a), también operaciones como raíz cuadrada, e implementanban funciones trascendentes como cálculo del seno, coseno, tangente, arcotangente, logaritmos y exponenciación.
A partir de la introducción del 80486, Intel incorporó el coprocesador matemático junto con el principal, con lo que su existencia dejó de ser opcional, convirtiéndose en estándar.
§3.3  Capacidad de procesar varias instrucciones en paralelo
La ejecución de cada instrucción ensamblador no se realiza en un solo ciclo de reloj.  Cada instrucción puede contener varias microinstrucciones, de forma que en general el rendimiento del procesador no equivale a una instrucción en cada ciclo.  Una forma de aumentar la eficiencia es procesar varias instrucciones en paralelo, de forma que, en la medida de lo posible, varias instrucciones se encuentran en diversas fases de ejecución simultanea de su microcódigo.  Utilizando un número conveniente de estas vías de ejecución paralela se consiguen rendimientos que actualmente han excedido la relación 1:1, de forma que la arquitectura súper escalar del Pentium Pro proporciona rendimientos del orden de tres instrucciones por ciclo de reloj.
El primero en implementar esta arquitectura en el PC fue el 80386 de Intel, que incluye seis de estas vías de ejecución:
  1. La unidad de interfaz del bus ("Bus Interface Unit") accede a memoria y a otros dispositivos de E/S.
  2. La unidad de precarga de instrucciones ("Code Prefetch Unit") recibe objetos desde la unidad de bus y la sitúa en una cola de 16 bytes.
  3. La unidad de decodificación de instrucciones ("Instruction Decode Unit") decodifica el código objeto recibido en la unidad de precarga y lo traduce a microcódigo.
  4. La unidad de ejecución ("Execution Unit") ejecuta las instrucciones del microcódigo.
  5. La unidad de segmento ("Segment Unit") traduce direcciones lógicas en direcciones absolutas, y realiza comprobaciones de protección.
  6. La unidad de paginación ("Paging Unit") traduce las direcciones absolutas en direcciones físicas; realiza comprobaciones de protección de página, y dispone de una cache con información de las 32 últimas páginas accedidas.
§3.4  Introducción de soporte para sistemas multiporcesador
Esta capacidad, originaria del mundo de los mainframe, se introdujo en el procesador Intel 80486, permitiendo así el desarrollo de auténticos sistemas multiproceso en la informática personal.  Este procesador también incluyó por primera vez dispositivos de ahorro de energía, incluyendo que el procesador redujese su velocidad, o incluso suspendiese la ejecución manteniendo su estatus, de forma que pudiera ser reiniciado en el mismo punto de la "hibernación".
§3.5  Movilidad y conectividad
En el primer trimestre del 2003 Intel materializa bajo una sola denominación las tendencias más significativas del momento en el mundo de la computación:  movilidad y conectividad (la palabra de moda es "Wireless").  A este efecto anuncia Centrino; más que un procesador es un compendio de tecnología móvil con el que el gigante del hardware se posiciona en el cada vez más importante segmento de los dispositivos móviles.  Bajo estas siglas se integran un procesador Pentium M, la familia de chipset Intel 855 y las funciones de red inalámbrica del dispositivo Intel Pro/Wireless 2100 Network Connection para el estándar 802.11.
§3.6  Multinúcleo
A lo largo de 2005 se comienzan a popularizar los procesadores de doble núcleo en los ordenadores personales.  Parece que, una vez agotadas las posibilidades de procesamiento de instrucciones en paralelo en un solo procesador ("multi-threading"), los pasos se orientan hacia los procesadores de doble núcleo, en realidad dos procesadores en un mismo chip, cada uno con su propia cache, con lo que el multiproceso cobra un significado real en las máquinas que los montan ("Hyper-threading"").  Los equipos personales, incluso portátiles tienen ahora capacidades de proceso que hasta hace poco estaban restringidas a servidores de gama alta con dos procesadores. Por ejemplo, máquinas Intel con dos procesadores Xeon.
Nota: no confundir una máquina con dos o más procesadores independientes (multiprocesador) con un procesador de doble núcleo. En general, una máquina con dos procesadores es más rápida que una de doble núcleo, pero en ambos casos, para sacar provecho de sus posibilidades, es necesario que el Sistema Operativo sea capaz de reconocer el "hyperi-threading", y que el software de aplicación también sea capaz de usar procesos multi-hebra SMT ("Simultaneous Multi-threading Technology").  En caso contrario, será detectado y utilizado un solo núcleo.
En este año los equipos personales de gama alta montan procesadores de doble nucleo. Por ejemplo, Intel Pentium D, con discos SATA; grabador DVD+/-RW doble capa, y distintas configuraciones de tarjetas gráficas de altas prestaciones.
En Noviembre de 2006 Intel presenta en Ginebra, Suiza, su primer procesador con cuatro núcleos (“quad-core”) en un mismo chip.  La prensa especializada destaca que su capacidad multiplica por miles de millones la del primero que salió al mercado en 1971.  El nuevo procesador contiene 2.000 Millones de transistores frente a 2.300 del primero y su frecuencia de reloj es de 2.66 GHerzios, frente a los 740 KHerzios del anterior. Además presentan la ventaja de consumir un 50% menos que la serie precedente.  Los portavoces de Intel recuerdan que si la industria del automóvil se hubiese desarrollado tan rápido como la electrónica digital, a la fecha (2006) un automóvil podría atravesar Estados Unidos de costa a costa en menos de 10 segundos.  Además señalan que, en vista del éxito alcanzado por los de doble núcleo, sus planes incluyen estar fabricando procesadores de 80 núcleos en un plazo de 5 años.


REFLEXIÓN 

Un Microprocesador es el cerebro de todo equipo de computo que por razones comerciales, casi todos los modelos varían en sus versiones, la diferencia entre estos se basa en la frecuencia interna,  el tamaño de cache, etc. 
Sabiendo esto podemos decir que existen diferentes tipos de procesadores que elaboran de diferentes formas, y con el paso del tiempo han ido evolucionando de manera considerable para nuestros equipos de computo.

  

NORMAS DE SEGURIDAD



 

 OPERAR EL EQUIPO DE CÓMPUTO CONFORME A LAS NORMA DE SEGURIDAD E HIGIENE 


1.-trasladar el equipo de cómputo de acuerdo a las medidas de seguridad. nunca muevas el equipo cuando este prendido, asegúrate antes de moverlo de que este apagado, desconectado de la corriente eléctrica y desconecta todos los componentes de ella como el ratón, teclado, monitor, impresora, etc. el mejor traslado de un equipo de cómputo es en una caja de cartón resistente y empaques de hielo seco, esto es, para evitar que los movimientos de la computadora afecten partes internas o externas de la misma
 
 
 
2.-Evita movimientos bruscos o golpes al equipo de cómputo, ya que pueden afectar en sus piezas internas y/o en los plásticos externos, vidrio del monitor, tela de las bocinas, etc., así mismo evita el contacto de la computadora con cualquier tipo de líquido (agua, refresco, café, líquidos corrosivos, etc.). Mantén el equipo en un lugar seco y fresco ya que el calor o la exposición al sol le puede afectar piezas internas al CPU y monitor. Cuida su computadora mientras la traslada. 



3.-conectar y desconectar los diferente dispositivos. empezaremos viendo qué puertos vienen en el cpu, para esto podemos buscarlos en la parte trasera, no todos están ubicados en el mismo lugar, este es un ejemplo: en el cpu no difieren si es horizontal o vertical el gabinete ya que los puertos pueden estar de las 2 formas sin que esto afecte el desempeño, su funcionamiento es exactamente igual 

 

  4.-utilizar los equipos de proteccion contra variaciones de corriente. probablemente un usuario de pc no puede imaginar una pesadilla peor que el hecho de que un pico de voltaje muy fuerte, como el que produce un relámpago, queme los delicados componentes internos del computador. si se adquiere un buen supresor de picos, el pc queda protegido contra ese suceso. sin embargo hay problemas eléctricos menos intimidantes y notorios, y por ello más peligrosos, que pueden dañar lentamente los componentes del computador, sin que la persona lo note. se trata de fluctuaciones de voltaje.


5.-Limpieza Física y normas de seguridad de equipo de computo Uno de los aspectos más importantes en el mantenimiento de una PC es la limpieza física interior. Este factor no es tan importante en las computadoras portátiles (laptops), cuyo interior está más aislado y protegido. Sin embargo en el interior de las computadoras de mesa, clones o de marca, se acumula suciedad de diversos orígenes, y los conectores interiores tienden a oxidarse o a disminuir su conectividad por factores mecánicos 
 



6.-El grado de suciedad acumulado en una PC depende fundamentalmente del ambiente donde se encuentra instalada. Los principales orígenes de la suciedad interior son los siguientes: - Polvo ambiental - Huevos y deposiciones de origen animal - Corrosión de componentes internos - Oxígeno del aire, que inevitablemente genera procesos de oxidación ¿De que depende la suciedad en una computadora? 





 

 7.-Equipo de limpieza: utilizar aire comprimido para sacar la suciedad de todos los recovecos pero el polvo sale disparado y si el ordenador está muy sucio se puede montar un cisco de cuidado. Se puede utilizar un aspirador, tan efectivo me parece suficiente para quitar la mayor parte de la suciedad. Se pueden ayudar con una brocha pequeña para trabajar los lugares con un acceso más complicado. 
Limpiezas periódicas: es difícil decir cada cuanto tiempo hay que limpiar el equipo, depende de las condiciones del entorno y puede ser interesante hacerlo cada tres meses o una vez al año. 


 





8.-El interior de una PC es un albergue ideal para cucarachas, pequeños roedores, y diversos tipos de insectos. Una PC cuenta generalmente con infinidad de aberturas por donde estos entes penetran, generalmente en horas de la noche, eligiendo en ocasiones a la PC como morada, procreando en su interior. ¿Qué puede pasar dentro de una PC?



9.-Antes de intentar tocar o desconectar componentes internos debemos estar seguros que la PC se encuentre totalmente desenergizada, ya que una desconexión "en caliente" puede resultar dañina. También debemos tomar la precaución de descargar la electricidad estática de nuestro cuerpo antes de tocar componentes de microelectrónica, especialmente las memorias. ¿Qué debemos hacer antes de desconectar componentes internos?

  10.-Existen instrumentos que permiten una descarga total, pero si no se cuenta con tales instrumentos debemos hacer contacto durante unos cinco segundos con todos los dedos de ambas manos a los componentes desnudos conectados al chásis de la PC, como por ejemplo tornillos. Además de esta precaución, nunca deben tocarse 



11.-Es importante ver que el ventilador este libre de etiquetas, pelusas o algo que obstaculice la entrada de aire al procesador, al lado del ventilador se encuentra un switch con los números 0 y 1 los cuales representan: 0 sin entrada de energía y 1 con entrada libre de energía; cuando estés por conectar o desconectar tu equipo de cómputo asegúrate que este presionado el switch del lado donde este el 0. ¿Que medidas debemos tomar?

12.-Ahora que ya están todos los componentes conectados y la computadora en una mesa apropiada, podemos conectar el monitor, el cpu, las bocinas, la impresora, etc., al regulador y este a la corriente eléctrica. Ahora cambie el switch trasero del CPU antes mencionado (que quede en 1) para que así pase la corriente y pueda encender el equipo de cómputo. 

 











REFLEXION

Enseña cual es la manera mas segura tanto para el equipo como para el usario de el mejor traslado y coneccion del equipo de computo.

Desde como cargar el gabinete hasta la forma de enrollar los cables para no forzar o dañar algun componente de la PC.


Cabe mencionar que tambien hay normas para el ensamble y mantenimiento del equipo, pero es recomendable que no arriesges tus componentes y la lleves con la persona indicada para ambas cosas.

MEMORIA RAM




Uso por el sistema
Se utiliza como memoria de trabajo para el sistema operativo, los programas y la mayoría del software. Es allí donde se cargan todas las instrucciones que ejecutan el procesador y otras unidades de cómputo. Se denominan "de acceso aleatorio" porque se puede leer o escribir en una posición de memoria con un tiempo de espera igual para cualquier posición, no siendo necesario seguir un orden para acceder a la información de la manera más rápida posible. Durante el encendido del computador, la rutina POST verifica que los módulos de memoria RAM estén conectados de manera correcta. En el caso que no existan o no se detecten los módulos, la mayoría de tarjetas madres emiten una serie de pitidos que indican la ausencia de memoria principal. Terminado ese proceso, la memoria BIOS puede realizar un test básico sobre la memoria RAM indicando fallos mayores en la misma.

Uno de los primeros tipos de memoria RAM fue la memoria de núcleo magnético, desarrollada entre 1949 y 1952 y usada en muchos computadores hasta el desarrollo de circuitos integrados a finales de los años 60 y principios de los 70. Esa memoria requería que cada bit estuviera almacenado en un toroide de material ferromágnetico de algunos milímetros de diámetro, lo que resultaba en dispositivos con una capacidad de memoria muy pequeña. Antes que eso, las computadoras usaban relés y líneas de retardo de varios tipos construidas para implementar las funciones de memoria principal con o sin acceso aleatorio.
En 1969 fueron lanzadas una de las primeras memorias RAM basadas en semiconductores de silicio por parte de Intel con el integrado 3101 de 64 bits de memoria y para el siguiente año se presentó una memoria DRAM de 1 Kibibyte, referencia 1103 que se constituyó en un hito, ya que fue la primera en ser comercializada con éxito, lo que significó el principio del fin para las memorias de núcleo magnético. En comparación con los integrados de memoria DRAM actuales, la 1103 es primitiva en varios aspectos, pero tenía un desempeño mayor que la memoria de núcleos.
En 1973 se presentó una innovación que permitió otra miniaturización y se convirtió en estándar para las memorias DRAM: la multiplexación en tiempo de la direcciones de memoria. MOSTEK lanzó la referencia MK4096 de 4 Kb en un empaque de 16 pines, mientras sus competidores las fabricaban en el empaque DIP de 22 pines. El esquema de direccionamiento se convirtió en un estándar de facto debido a la gran popularidad que logró esta referencia de DRAM. Para finales de los 70 los integrados eran usados en la mayoría de computadores nuevos, se soldaban directamente a las placas base o se instalaban en zócalos, de manera que ocupaban un área extensa de circuito impreso. Con el tiempo se hizo obvio que la instalación de RAM sobre el impreso principal, impedía la miniaturización , entonces se idearon los primeros módulos de memoria como el SIPP, aprovechando las ventajas de la construcción modular. El formato SIMM fue una mejora al anterior, eliminando los pines metálicos y dejando unas áreas de cobre en uno de los bordes del impreso, muy similares a los de las tarjetas de expansión, de hecho los módulos SIPP y los primeros SIMM tienen la misma distribución de pines.
A finales de los 80 el aumento en la velocidad de los procesadores y el aumento en el ancho de banda requerido, dejaron rezagadas a las memorias DRAM con el esquema original MOSTEK, de manera que se realizaron una serie de mejoras en el direccionamiento como las siguientes:


Módulos formato SIMM de 30 y 72 pines, los últimos fueron utilizados con integrados tipo EDO-RAM.
FPM-RAM (Fast Page Mode RAM)
Inspirado en técnicas como el "Burst Mode" usado en procesadores como el Intel 486, se implantó un modo direccionamiento en el que el controlador de memoria envía una sola dirección y recibe a cambio esa y varias consecutivas sin necesidad de generar todas las direcciones. Esto supone un ahorro de tiempos ya que ciertas operaciones son repetitivas cuando se desea acceder a muchas posiciones consecutivas. Funciona como si deseáramos visitar todas las casas en una calle: después de la primera vez no seria necesario decir el número de la calle únicamente seguir la misma. Se fabricaban con tiempos de acceso de 70 ó 60 ns y fueron muy populares en sistemas basados en el 486 y los primeros Pentium.
   EDO-RAM (Extended Data Output RAM)
Lanzada en 1995 y con tiempos de accesos de 40 o 30 ns suponía una mejora sobre su antecesora la FPM. La EDO, también es capaz de enviar direcciones contiguas pero direcciona la columna que va utilizar mientras que se lee la información de la columna anterior, dando como resultado una eliminación de estados de espera, manteniendo activo el búffer de salida hasta que comienza el próximo ciclo de lectura.
§  BEDO-RAM (Burst Extended Data Output RAM)
Fue la evolución de la EDO RAM y competidora de la SDRAM, fue presentada en 1997. Era un tipo de memoria que usaba generadores internos de direcciones y accedía a más de una posición de memoria en cada ciclo de reloj, de manera que lograba un desempeño un 50% mejor que la EDO. Nunca salió al mercado, dado que Intel y otros fabricantes se decidieron por esquemas de memoria sincrónicos que si bien tenían mucho del direccionamiento MOSTEK, agregan funcionalidades distintas como señales de reloj.

Tecnologías de memoria

La tecnología de memoria actual usa una señal de sincronización para realizar las funciones de lectura-escritura de manera que siempre esta sincronizada con un reloj del bus de memoria, a diferencia de las antiguas memorias FPM y EDO que eran asíncronas. Hace más de una década toda la industria se decantó por las tecnologías síncronas, ya que permiten construir integrados que funcionen a una frecuencia superior a 66 MHz.

Memorias RAM con tecnologías usadas en la actualidad.

SDR SDRAM

Artículo principal: SDRAM
Memoria síncrona, con tiempos de acceso de entre 25 y 10 ns y que se presentan en módulos DIMM de 168 contactos. Fue utilizada en los Pentium II y en losPentium III , así como en los AMD K6, AMD Athlon K7 y Duron. Está muy extendida la creencia de que se llama SDRAM a secas, y que la denominación SDR SDRAM es para diferenciarla de la memoria DDR, pero no es así, simplemente se extendió muy rápido la denominación incorrecta. El nombre correcto es SDR SDRAM ya que ambas (tanto la SDR como la DDR) son memorias síncronas dinámicas. Los tipos disponibles son:
PC100: SDR SDRAM, funciona a un máx de 100 MHz.
PC133: SDR SDRAM, funciona a un máx de 133 MHz.

DDR SDRAM

Artículo principal: DDR SDRAM
Memoria síncrona, envía los datos dos veces por cada ciclo de reloj. De este modo trabaja al doble de velocidad del bus del sistema, sin necesidad de aumentar la frecuencia de reloj. Se presenta en módulos DIMM de 184 contactos en el caso de ordenador de escritorio y en módulos de 144 contactos para los ordenadores portátiles. Los tipos disponibles son:
PC2100 o DDR 266: funciona a un máx de 133 MHz.
PC2700 o DDR 333: funciona a un máx de 166 MHz.
PC3200 o DDR 400: funciona a un máx de 200 MHz.

DDR2 SDRAM


Módulos de memoria instalados de 256 MiB cada uno en un sistema con doble canal.
Artículo principal: DDR2
Las memorias DDR 2 son una mejora de las memorias DDR (Double Data Rate), que permiten que los búferes de entrada/salida trabajen al doble de la frecuencia del núcleo, permitiendo que durante cada ciclo de reloj se realicen cuatro transferencias. Se presentan en módulos DIMM de 240 contactos. Los tipos disponibles son:
PC2-4200 o DDR2-533: funciona a un máx de 533 MHz.
PC2-5300 o DDR2-667: funciona a un máx de 667 MHz.
PC2-6400 o DDR2-800: funciona a un máx de 800 MHz.
PC2-8600 o DDR2-1066: funciona a un máx de 1066 MHz
PC2-9000 o DDR2-1200: funciona a un máx de 1200 MHz

DDR3 SDRAM

Artículo principal: DDR3
Las memorias DDR 3 son una mejora de las memorias DDR 2, proporcionan significantes mejoras en el rendimiento en niveles de bajo voltaje, lo que lleva consigo una disminución del gasto global de consumo. Los módulos DIMM DDR 3 tienen 240 pines, el mismo número que DDR 2; sin embargo, los DIMMs son físicamente incompatibles, debido a una ubicación diferente de la muesca. Los tipos disponibles son:
PC3-8600 o DDR3-1066: funciona a un máx de 1066 MHz.
PC3-10600 o DDR3-1333: funciona a un máx de 1333 MHz.
PC3-12800 o DDR3-1600: funciona a un máx de 1600 MHz.


Módulos de la memoria RAM




Formato SO-DIMM.
Los módulos de memoria RAM son tarjetas de circuito impreso que tienen soldados integrados de memoria DRAM por una o ambas caras. La implementación DRAM se basa en una topología de Circuito eléctrico que permite alcanzar densidades altas de memoria por cantidad de transistores, logrando integrados de decenas o cientos de Megabits. Además de DRAM, los módulos poseen un integrado que permiten la identificación de los mismos ante el computador por medio del protocolo de comunicación SPD.
La conexión con los demás componentes se realiza por medio de un área de pines en uno de los filos del circuito impreso, que permiten que el modulo al ser instalado en un zócalo apropiado de la placa base, tenga buen contacto eléctrico con los controladores de memoria y las fuentes de alimentación. Los primeros módulos comerciales de memoria eran SIPP de formato propietario, es decir no había un estándar entre distintas marcas. Otros módulos propietarios bastante conocidos fueron los RIMM, ideados por la empresa RAMBUS.
La necesidad de hacer intercambiable los módulos y de utilizar integrados de distintos fabricantes condujo al establecimiento de estándares de la industria como los JEDEC.
Módulos SIMM: Formato usado en computadores antiguos. Tenían un bus de datos de 16 o 32 bits
Módulos DIMM: Usado en computadores de escritorio. Se caracterizan por tener un bus de datos de 64 bits.
Módulos SO-DIMM: Usado en computadores portátiles. Formato miniaturizado de DIMM.


Relación con el resto del sistema

Diagrama de la arquitectura de un ordenador.
Dentro de la jerarquía de memoria la RAM se encuentra en un nivel después de los registros del procesador y de las cachés en cuanto a velocidad. Los módulos de memoria se conectan eléctricamente a un controlador de memoria que gestiona las señales entrantes y salientes de los integrados DRAM. Las señales son de tres tipos: direccionamiento, datos y señales de control. En el módulo de memoria esas señales están divididas en dos buses y un conjunto misceláneo de líneas de control y alimentación, Entre todas forman el bus de memoria que conecta la RAM con su controlador:
§  Bus de datos: Son las líneas que llevan información entre los integrados y el controlador. Por lo general están agrupados en octetos siendo de 8,16,32 y 64 bits, cantidad que debe igualar el ancho del bus de datos del procesador. En el pasado, algunos formatos de modulo, no tenían un ancho de bus igual al del procesador.En ese caso había que montar módulos en pares o en situaciones extremas, de a 4 módulos, para completar lo que se denominaba banco de memoria, de otro modo el sistema no funciona. Esa fue la principal razón para aumentar el número de pines en los módulos, igualando al ancho de bus de procesadores como el Pentium a 64 bits, a principios de los 90.
§  Bus de direcciones: Es un bus en el cual se colocan las direcciones de memoria a las que se requiere acceder. No es igual al bus de direcciones del resto del sistema, ya que está multiplexado de manera que la dirección se envía en dos etapas.Para ello el controlador realiza temporizaciones y usa las líneas de control. En cada estándar de módulo se establece un tamaño máximo en bits de este bus, estableciendo un límite teórico de la capacidad máxima por módulo.
§  Señales misceláneas: Entre las que están las de la alimentación (Vdd, Vss) que se encargan de entregar potencia a los integrados. Están las líneas de comunicación para el integrado de presencia que sirve para identificar cada módulo. Están las líneas de control entre las que se encuentran las llamadas RAS (row address strobe) y CAS (column address strobe) que controlan el bus de direcciones, por ultimo estan las señales de reloj en las memorias sincrónicas SDRAM.
Algunos controladores de memoria en sistemas como PC y servidores se encuentran embebidos en el llamado "North Bridge" o "Puente Norte" de la placa base. Otros sistemas incluyen el controlador dentro del mismo procesador (en el caso de los procesadores desde AMD Athlon 64 e Intel Core i7 y posteriores). En la mayoría de los casos el tipo de memoria que puede manejar el sistema está limitado por los sockets para RAM instalados en la placa base, a pesar que los controladores de memoria en muchos casos son capaces de conectarse con tecnologías de memoria distintas.
Una característica especial de algunos controladores de memoria, es el manejo de la tecnología canal doble (Dual Channel), donde el controlador maneja bancos de memoria de 128 bits, siendo capaz de entregar los datos de manera intercalada, optando por uno u otro canal, reduciendo las latencias vistas por el procesador. La mejora en el desempeño es variable y depende de la configuración y uso del equipo. Esta característica ha promovido la modificación de los controladores de memoria, resultando en la aparición de nuevos chipsets (la serie 865 y 875 de Intel) o de nuevos zócalos de procesador en los AMD (el 939 con canal doble , reemplazo el 754 de canal sencillo). Los equipos de gama media y alta por lo general se fabrican basados en chipsets o zócalos que soportan doble canal o superior.
Detección y corrección de errores
Existen dos clases de errores en los sistemas de memoria, las fallas (Hard fails) que son daños en el hardware y los errores (soft errors)provocados por causas fortuitas. Los primeros son relativamente fáciles de detectar (en algunas condiciones el diagnóstico es equivocado), los segundos al ser resultado de eventos aleatorios, son más difíciles de hallar. En la actualidad la confiabilidad de las memorias RAM frente a los errores, es suficientemente alta como para no realizar verificación sobre los datos almacenados, por lo menos para aplicaciones de oficina y caseras. En los usos más críticos, se aplican técnicas de corrección y detección de errores basadas en diferentes estrategias:
§  La técnica del bit de paridad consiste en guardar un bit adicional por cada byte de datos, y en la lectura se comprueba si el número de unos es par (paridad par) o impar (paridad impar), detectándose así el error.
§  Una técnica mejor es la que usa ECC, que permite detectar errores de 1 a 4 bits y corregir errores que afecten a un sólo bit. Esta técnica se usa sólo en sistemas que requieren alta fiabilidad.
Por lo general los sistemas con cualquier tipo de protección contra errores tiene un costo más alto, y sufren de pequeñas penalizaciones en desempeño, con respecto a los sistemas sin protección. Para tener un sistema con ECC o paridad, el chipset y las memorias deben tener soporte para esas tecnologías. La mayoría de placas base no poseen dicho soporte.
Para los fallos de memoria se pueden utilizar herramientas de software especializadas que realizan pruebas sobre los módulos de memoria RAM. Entre estos programas uno de los más conocidos es la aplicación Memtest86+ que detecta fallos de memoria.

REFLEXION

Hay muchos tipos de memorias RAM unas ya mas descontinuadas que otras y por lo mismo diferencian en tamaño tanto de capacidad como en dimencion.
Estos dispositivos tambien almacenan datos pero otros diferentes a los que guarda una memoria flash o un Disco Duro, estos son datos en bites.